TDI Module Four

Database Security Issues

This module is the final of four modules that describe the use of the Trusted
Database Interpretation (TDI) of the Trusted Computer System Evaluation
Criteria (TCSEC) for database product evaluation and certification. The basic
terms and concepts presented in the TDI are summarized in TDI Module One.
Module Two describes database security policies that can be supported by a
trusted database management system (DBMS). TDI Module Three describes
various architectural approaches for building a trusted DBMS. This module
describes other database security issues that are not covered by the TDI but
are important issues in database security, such as inference, aggregation, and
database integrity.

Module Learning Objectives

This module provides the student with information on security issues which
are unique to database management systems (DBMSs) and the underlying
security policy issues which impact DBMSs. Upon completion of this module,
the student should:

1) be familiar with inference, and aggregation of data and how these
issues affect database design and classification.

2) be familiar with the relationships between integrity and secrecy in a
DBMS, especially between entity integrity, referential integrity, and
signaling channels.

Overview

This module discusses some security issues of special importance in databases:
inference, aggregation, and database integrity. The overview provides a brief
introduction to these subjects. More details on many of these topics are covered
are given in a set of TDI Companion Documents [DINF92], [DAGG92],
[DINT92]. The module is divided into various sections. The overview section
contains a discussion of the underlying security policy and classification
management issues which create some of the aggregation and inference
problems in DBMSs. The next three sections overview specific issues.

There are three fundamental concepts associated with security issues in
DBMSs: 1) how to classify output at the proper level based on the associated
security policy; 2) how to approach the labeling issues associated with a
specific data element; and 3) how to determine the appropriate downgrading
of the information in the database.

Current DoD policy requires that information be correctly classified based on
content. As stated in the introduction by G.W. Smith in Research Directions in
Database Security “What should not happen is that a report, which only
contains unclassified data, be classified as TOP SECRET just because it
‘touched’” a TOP SECRET environment. To accomplish this, data (and the

-1- April 1997



TDI Module Four

associations between data) must be classified at a level that accurately reflect
its real classification.”

To understand the associated security issues, the student must also
understand policy guidance for data classification. DoD 5200.1-R provides the
basic guidance for classification of sensitive information. Based on this
guidance, developers and system integrators determine the specific database
design to comply with these policies. Inherent in the implementation of
databases based on DoD classification policies may be instances of inference,
and data aggregation. The following sections highlight these specific issues. It
must be emphasized that these issues are still the subject of research.

Inference

Inference occurs when a user is able to make a valid deduction, based only on
data the user is authorized to access, about data which the user is not
authorized to access. The TDI companion document “Inference Problems in
Multilevel Secure Database Management Systems” [DINF92] provides an in-
depth description of the problem and some discussion on potential solutions.
Inference can be grouped into three types:

1. Inference based on data derived from low data which is retrieved from
the database by a user.

2. Inference based on data derived from low data in conjunction with
metadata (integrity or value constraints) stored in the database.

3. Inference which requires some external knowledge in addition to that
found in the database.

Inference can occur regardless of the specific granularity associated with the
security levels in a database. Whether security is assigned to relations, tuples,
columns, or the actual data element, inference can still occur.

The first type of inference is generally a database design issue. A user simply
requests data from the system and is granted access to data which allows the
user to infer more sensitive information. For example, suppose a database
contains a relation giving the rank of employees and a tuple giving the salary
associated with a rank. If a user can observe employee-rank pairs and rank-
salary pairs, the user can infer the salary for an employee. If the salary for an
employee is to be kept from the user, the user must be prevented from
retrieving either employee-rank or rank-salary tuples.

The second circumstance where a user can infer information about higher level
data in a database occurs when database integrity constraints involve data at
multiple levels. In such a case, if the low level user attempts to update
information at a lower level but is prevented from doing so because of a
constraint involving higher level data, the user can discover something about
the higher level data. An example is a database containing cargo data for
airplanes. Suppose the database has a relation with airplane number, cargo

-92- April 1997



TDI Module Four

item, and cargo weight. If there is a constraint that the total cargo weight for
an airplane must be less than some number, a user can infer the weight of more
sensitive cargo by attempting to insert cargo items at the level for which the
user is authorized. If the insert is denied, the user can determine that the
weight of the more sensitive cargo items is greater than the total allowed
weight minus the total weight of the items the user can see.

The third type occurs when users can infer information for which they are not
authorized based on the information for which they are authorized access and
facts they already know. For example, if a user is only authorized access to
unclassified flights but knows that fifty planes have been scheduled for the
week and only forty-five are visible to his terminal, he may infer from his
knowledge that five flights are classified.

Aggregation

Aggregation occurs when a collection of individual pieces of information must
be classified at a higher level than any single piece of information which
comprises it. Aggregation is sometimes grouped into cardinal aggregation and
data association. In cardinality aggregation the number of data objects is the
issue. For example, suppose the phone number of any one individual in an
organization is considered unclassified, but a sufficiently large set of phone
numbers is considered classified. Some researchers have suggested (e.g.,
Seaviews [JLUNG89]) that in cardinal aggregation problems, the data objects
which make up the aggregate set should be handled as if classified at the level
of the aggregate, but a special mechanism should allow facilitated downgrade
of individual data objects in the aggregate. This view is based on an analysis of
the example above in which the phone book itself is classified but individuals
with legitimate access to the phone book are authorized to release name-phone
number pairs from the book.

In data association, the problem is that the association between data objects is
considered sensitive, but the individual objects are not sensitive. Data
association is sometimes viewed as an instance of inference since the user may
be able to infer the association by executing queries returning the individual
data objects. At any rate, this problem can typically be solved through proper
database design by appropriately classifying tuples which allow the sensitive
association to be established.

Systems enforcing standard MAC and DAC policies can be implemented using
generalized mechanisms that are application independent. No such
mechanism is likely to work for general inference and aggregation control.
Inference and aggregation tend to be unique and specific to the individual
databases so no generic solution is practical. Inference and aggregation control
are problems inherent in the data being managed, not problems inherent in the
data management software of the DBMS (although certain DBMS mechanisms
can be used to reduce this problem). The potential for inference and
aggregation make the proper design and object classification of MLS databases
a difficult problem even when access to the database is controlled by a trusted
DBMS. The TDI companion document “Aggregation Problems in Multilevel

-3- April 1997



TDI Module Four

Secure Database Management Systems” [DAGG92] provides an in-depth
description of the aggregation problem and some discussion on potential
solutions.

Database Integrity

A major problem with MLS databases is that data integrity and data secrecy
are frequently at odds with one another. Enforcing integrity to ensure that the
relationships between data objects are not invalidated as a result of data
insertion, modification, or deletion poses specific security issues in MLS
systems. In particular, enforcing integrity constraints can cause inference
problems and may provide signaling channels (i.e., covert channels). In
general, a database integrity constraint requires that a relationship be
maintained over certain sets of data elements in the database. If the set
covered by an integrity constraint includes data at multiple levels, knowledge
of the results of attempts to update those elements in the set which are
accessible to a user together with knowledge of the constraint itself can yield
knowledge of the elements not directly accessible to the user. This is an
example of inference. Since a high level process can alter sensitive data
elements in the set, this inference can then be used as a channel to signal
information about other sensitive data.

Entity integrity and referential integrity are two important integrity
constraints that are enforced by a relational DBMS. The TDI Companion
Document, Entity and Referential Integrity in Multilevel Secure Database
Management Systems, [DINT92], discusses these topics in detail. The following
sections provide an overview of the relationships of entity and referential
integrity to secrecy.

Entity Integrity

Entity integrity requires that the primary key be unique (actually an inherent
property of a “key”) and all attributes of the primary key be non-null. Data in
a relation represents some entity in the real world which must have a unique
identification. The primary key performs this function. The primary key must
also be non-null because it would be a contradiction in terms to use some entity
that did not have any unique identification.

Enforcing entity integrity provides inference. Specifically, if a user attempts to
insert a tuple with a given key and the insert is rejected because a more
sensitive tuple already exists with the same primary key, the user can infer the
existence of a sensitive tuple with the given primary key. This can be used as
a signaling channel by a high level process which inserts and deletes tuples
with particular primary keys signaling a low user who attempts to insert low
tuples with the same primary keys. Since the "alphabet" of the channel is the
set of possible values for the primary key, this can be quite a large bandwidth
channel.

A solution to this problem is polyinstantiation. Polyinstantiation refers to
multiple instantiations of a tuple with the same primary key. When a user

-4- April 1997



TDI Module Four

attempts to insert a tuple with the same primary key as an existing more
sensitive tuple, the insert is allowed, and the new tuple is inserted at the user’s
current access class. Essentially this can be viewed as considering the access
class of the key (or in the case of tuple granularity classification the access class
of the tuple) as part of the primary key. Since there will only be one instance of
a tuple with a given primary key at a given access class, entity integrity is
preserved with this concept of an expanded primary key. In this approach
entity integrity is changed from a multilevel constraint to a single level
constraint. In practice there are frequently problems with using
polyinstantiation. There needs to be an understanding of which instance
represent the '"right" tuple for a polyinstantiated tuple. User may get
misleading results from queries. Whether and how to use polyinstantiation
depends on the specific database and how it is used.

Since many applications using a relational database assume that the
requirements above hold for primary keys (i.e., all attributes in the primary
key are non-null), in most cases it is necessary that these requirements are met
when the database is viewed from any specific access class. This has two
consequences. First, the primary key must be uniformly classified. Otherwise,
when viewed from the access class of an element in the primary key not
dominated by the access classes of some other attribute of the primary key,
some of the primary key attributes would appear to be null. Second, the access
class of all attributes not in the primary key must dominate the access class of
the primary key. Otherwise, when viewed from the access class of an element
not dominated by the access classes of all attributes of the primary key, some
of the primary key attributes would appear to be null.

Referential Integrity

Referential integrity based on the ANSI standard for SQL2 requires that each
referencing foreign key value must have an identical target primary key value
in the referenced relation. Extending the concept of referential integrity from
single-level relations to multilevel relations adds significant complexity. This
is because restrictions are needed to enforce referential integrity controls in
MLS DBMSs without compromising secrecy. These problems arise when access
classes of the foreign key and the referenced primary key are not the same.

When tuples are inserted, deleted, or updated, the DBMS must ensure that
there is still a primary key of the value referenced by each foreign key. There
are several ways in which this can be done. The requested action can be denied
if it would violate referential integrity or additional actions can be
automatically performed to guarantee that referential integrity is preserved.
For example, suppose a user tries to delete a tuple which is referenced by
another tuple through a foreign key. If the delete were performed without any
additional action, the foreign key would then reference a non-existent tuple
resulting in a violation of referential integrity. Possible solutions are to have
the DBMS prohibit the deletion of the tuple as long as it is referenced by other
tuples, to delete the tuple as requested and also delete all tuples referencing
the deleted tuple, or to delete the tuple as requested and change the references
of other tuples to some default value. Each of these approaches introduces the

-5- April 1997



TDI Module Four

possibility of signaling channels when the access classes of the referencing key
and the referenced key differ.

In order to maintain referential integrity when the database is viewed from
any specific access class there are two requirements on the access class of the
foreign key and the referenced primary key. First, for the reasons described in
the discussion of entity integrity, both the foreign key and the referenced
primary key should be uniformly classified (i.e., all attributes included in the
key should have the same access class).

The second requirement follows from the standard referential integrity
requirement that there must exist a primary key of the value referenced by the
foreign key. Therefore, when the database is viewed from the access class of the
foreign key, the referenced primary key must be visible. Since the only
elements visible from the access class of the foreign key are at access classes
dominated by the access class of the foreign key, this yields the requirement:
The access class of the foreign key must dominate the access class of the
primary key of the referenced tuple.

Beyond these requirements on the classification of the foreign key and
referenced primary key, the need to enforce Mandatory Access Control imposes
restrictions on the methods the DBMS can use to enforce referential integrity
when a user requests an update, insert, or delete. Consider, for example, the
case discussed above where a user tries to delete a tuple which is referenced by
another tuple through a foreign key. If the foreign key is at an higher access
class than the access class of the referenced tuple this would allow the user to
infer the existence of a foreign key which the user could not directly access.
This represents a signaling channel. Deleting or altering the tuple with the
foreign key would not result in information compromise but might create
problems with the usefulness of the data depending upon the particular
database. These issues are discussed in considerable detail in [DINT92].

In today’s environment, it is not possible to obtain both perfect data integrity
and perfect multilevel security. Furthermore, the industry trend is towards
supporting greater integrity enforcement capabilities. A variety of methods are
described in [JMAI91], which show the extremes of maintaining either
complete integrity or the prospect of complete security, as well as some
intermediate tradeoff point which may allow greater latitude to particular
applications in choosing an appropriate balance. Integrity is one of the
principle benefits of a DBMS, but the use of the integrity features must be
carefully scrutinized for non-obvious security flaws. There are several research
projects directed at solutions for this problem. Examples of issues which are
the focus of various research efforts are: 1) the covert channel problem (which
becomes significant when the MLS system requires the mechanism to write-up
to enforce the integrity constraint), and 2) use of auditing of significant events.

Required Readings

TLUN92 Research Directions in Database Security, Teresa Lunt, Editor, Springer
Verlag, 1992. [Chapters 11, 12, & 13]

-6- April 1997



DINF92

TDI Module Four

Chapter 11 provides the concept of classification and why MLS databases
are an issue.

Chapter 12 is an overview on semantics of data classification which is the
basis for the Bell-LaPadula model.

Chapter 13 provides the views on data inference and aggregation issues.

National Computer Security Center, Inference Problems in Multilevel
Secure Database Management Systems, Part of the TDI Companion
Documents Series, May 1992.

This report provides a state-of-the-art survey of the various aspects of the
inference problem. It defines and characterizes the inference problem as it
relates to multilevel secure database systems and describes methods that
have been developed for resolving the problem.

DAGG92 National Computer Security Center, Aggregation Problems in Multilevel

DINT92

Secure Database Management Systems, Part of the TDI Companion
Documents Series, May 1992.

This document is intended to stimulate discussion and research: it is not
intended to serve as a guideline. The following subjects are covered: data
aggregation problem, relationship between inference and data aggregation,
and current measures for data aggregation control in commercial and
system-high databases. An overview of on-going research projects are
included.

National Computer Security Center, Entity and Referential Integrity in
Multilevel Secure Database Management Systems, Part of the TDI
Companion Documents Series, May 1992.

This document defines integrity constraints in the context of single-level
systems and then extends them to MLS systems. Various referential
integrity rules have been investigated with both secrecy and integrity in
mind.

Other Related Readings

JMAI91

B. Maimone, R. Allen, “Methods for Resolving the Security vs. Integrity
Conflict”, 4th RADC Database Security Workshop, April 1991.

TLUN92 Research Directions in Database Security, Teresa Lunt, Editor, Springer

JHINSS8

Verlag, 1992. [Chapters 2, 8, and 20]

T. H. Hinke, “Inference Aggregation Detection in Database Management
Systems”, 1988 IEE Symposium on Security and Privacy, April 1988.

JLUNS8S8 T. F. Lunt, et. al.,, “Final Report Vol 1: Security Policy and Policy

Interpretation for a Class Al Multilevel Secure Relational Database

-7- April 1997



TDI Module Four

System,” Computer Science Laboratory, SRI International, Menlo Park,
California, 1988.

JLUNS89 T. F. Lunt, “Aggregation and Inference: Facts and Fallacies”, 1989 IEEE
Symposium on Research in Security and Privacy, May 1989.

-8- April 1997



